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Abstract- Stochastic resonance (SR) is a phenomenon that input signal, noise, and performance measure[8]. Many kinds
performance of the nonlinear system can be improved with of nonlinear systems have been shown to yield stochastic
the addition of optimal amount of noise. Stochastic resonance resonance phenomenon, such as the static systems[4] and
has been increasingly used for signal processing. The output of
the nonlinear bistable dynamic system can be used to restore dynamic systems[l]. The input signal can be periodic[1]
the weak input signal corrupted by white Gaussian noise, if or aperiodic[5]. The classical stochastic resonance requires
the similarity between the input signal and the output can be the input signal to be subthreshold signal[l]. Recently, it
maximized. This paper will first use the optimization theory was found that the input signals can be arbitrary and are
to show that the normalized power norm (Cl) describing the not limited to weak signals. This is characterized by the
similarity will reach a larger maximum when tuning both the
system parameters and noise intensity, compared with that of suprathreshold stochastic resonance[6]. Not only the white
only adjusting noise intensity (classical stochastic resonance) or Gaussian noise[l], but also the colored[9] and non-Gaussian
only adjusting system parameters (parameter-tuning stochastic noise[1O], can generate a stochastic resonance effect. In
resonance). Then, a practical fast-converging optimization algo- order to describe the stochastic resonance more exactly,
rithm is mentioned to search the optimal system parameters and many quantifiers have been proposed as the performance
noise intensity. Finally, computer simulations are performed to m
verify this proposal and demonstrate its application in signal measures, such as signal-to-noise ratio[l], power norm[5],
processing. and mutual information[7]. Stochastic resonance has found

applications in many different areas, such as noise en-
Index Terms--Optimization, Stochastic Resonance, Signal hanced tactile sensation[1 I], the application of suprathreshold

Processing stochastic resonance to cochlear implant coding[12]. Another

I. INTRODUCTION important application is in signal processing. It has been
used for signal detection[13], signal transmission[15], sig-

Noise is usually thought to be annoying and should be nal estimation[17], and image processing[8]. The detector
removed from the system. In some nonlinear systems, how- based on stochastic resonance can improve the robustness
ever, the addition of some extra amount of noise has been of the detector and its performance can compare with the
shown to be helpful. This phenomenon is called Stochastic locally optimum detectors(LOD)[14]. When the information
resonance (SR)[1][2], and only exists in certain nonlinear is transmitted through a large parallel summing array, the
systems. For these systems, the synchronization between noise can enhance performance up to approximately half
the input signal and the noise will happen when the noise the theoretical noiseless channel capacity[16]. The Bayesian
intensity is adjusted properly. In these cases, the system estimator using stochastic resonance technique will achieve
performance, such as the output signal-to-noise ratio and the minimum of the mean square estimation error when
mutual information, will benefit from the noise. The im- estimating the frequency of a periodic signal corrupted by
provement of the system performance can be maximized a phase noise[17]. In order to make the noise useful, the
if the noise intensity is adjusted to an optimal level. This stochastic resonance effect should be realized. For the tradi-
phenomenon was first revealed by Benzi in 1981 to explain tional stochastic resonance, the stochastic resonance is real-
the periodically recurrent ice ages [3]. Since then, stochastic ized by adjusting noise intensity[l]. Recently, the parameter-
resonance has been continuously attracting considerable at- tuning stochastic resonance shows that tuning system pa-
tention of researchers. Basically, the stochastic resonance in- rameters is a better method to realize stochastic resonance
volves four elements: nonlinear system, information-carrying in some situations, especially when the initial input noise

*This work has been partially supported by the Polytechnic CAT'T Center intensity is already beyond the resonance region[18][19][20].
sponsored by New York State, NSF grants ECS-009317, OISE-0408925, and The chosen performance measure will reach a higher/lower
DMS-0504462, and an Air Force contract maximum/minimum, compared with that by adjusting noise
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intensity. This paper will apply optimization theory to show weak, i.e, S(t)2 < A2, and also of Gaussian-distribution,
that the maximal normalized power norm of the bistable the ensemble averaged power norm (Co) and the ensemble
double-well system can be further increased by tuning system averaged normalized power norm (Cl) can be approximated
parameters and noise intensity at the same time, compared by[5]

with that by parameter-tuning stochastic resonance and that (Co) -_ QoAo exp[-Eo + A2 S-(t)/2] S2 (t), (5)
by classical stochastic resonance. The normalized power
norm is the performance measure describing the similarity A[ S 2 (t) 11/2

between the input signal corrupted by white Gaussian noise (C1) (A2 (6)
and the output of this nonlinear system. The increase of the 1 + o(D)Q0 e( 0

similarity between the input and the output by this scheme where:
will benefit the restoration of the noisy weak input signal and -(D)=Ki(R(t)), (R(t-) Qoexp[-eo + Ags2(t)/2],
has potential applications in signal processing.

The rest of the paper is organized as follows. Section II Qo=KoA/v/r, eo = A2/4D, Ao = A/2D.
will describe the nonlinear bistable system and the related (R(t)) is the ensemble-averaged escape rate. Also, the
performance measure. In Section III, we will show it is angular brackets denote an ensemble average.
possible to further enhance the stochastic resonance effect It was revealed in [5] that this performance measure or
with tuning system parameters and noise intensity by working the similarity between input and output will be maximized
with a more general nonlinear bistable system. For the pur- when an optimal amount of additional noise is added into the
pose of practical implementation, Section IV will introduce system. This is termed aperiodic stochastic resonance (ASR).
the optimization algorithm to search for the optimal system Now, we will discuss the method in which the similarity can
parameters and noise intensity. Section V will focus on be further enhanced so that the corrupted input signal can be
the application of this scheme in signal processing. Finally, better restored.
Section VI concludes the paper.

III. ENHANCEMENT OF STOCHASTIC RESONANCE EFFECT

II. NONLINEAR BISTABLE DOUBLE-WELL STOCHASTIC Usually, the stochastic resonance effect is realized either
RESONANCE SYSTEM by adjusting noise intensity (classical stochastic resonance)

The nonlinear bistable double-well system can be ex- or by tuning system parameters (parameter-tuning stochastic
pressed in the following equation[5] resonance), but not both. In some cases, the parameter-tuning

dx OU method is better than the classic method. Intuitively, the
dt= + x stochastic resonance effect can be further enhanced if both

where U(x) is the potential function. the system parameters and the noise intensity are adjusted
The symmetric potential function with a fluctuating barrier at the same time. This, however, is not always true, even

is given by[5] if the performance measure is affected by both the system
U(x) -[A - S(t)]c + parameters and the noise intensity. In [21], the bit error rate

-(2) (BER) will be minimized if the noise intensity is not adjusted

where A is positive and is taken as a tuning parameter in and fixed at the initial level, while the system parameter
this paper. S(t) is the aperiodic input signal with zero-mean is tuned to the optimal value. In our recent paper[22],
average. ý(t) is white Gaussian noise with zero mean and we demonstrate that, for the bistable double-well dynamic
autocorrelation of (•(t)•(s)) = 2D6(t - s). The angular system with Gaussian-distributed input signal and fluctuating
brackets denote the ensemble average, barrier, it is possible to further increase the normalized power

In order to demonstrate the stochastic resonance effect, the norm (Cl) by tuning system parameter and noise intensity
cross-correlation measures (power norm C0, and normalized at the same time.
power normn CI) are taken as the performance measures In [22], we require that two additional parameters should

Co = max{S(t)R(t + r)}, (3) be introduced into the system, in order to make this mech-
(70 anism possible for different weak input signals. These two

[S= ) ]_ _ $ (4) new system parameters in [22], however, do not have direct
[S2 (t) 1/2 { [R(t) - R(t) [2 }1/2 physical meaning. This makes the mechanism of tuning sys-

where R(t) is used as the system response characterized by tem parameters and noise intensity a little hard to understand.
mean transition rate of the system. The overbar denotes an Now, we will change to a new system model in which these
average over time. 7- is a time lag.

The cross-correlation describes the similarity between the system parameters will have direct physical meaning. Based
input signal corrupted by the white Gaussian noise and the on this model, we will also prove that this mechanism is true
system output. Usually, it is hard to find an explicit expression not only for the Gaussian-distributed input signals, but also
for the above cross-correlation. If the input signal is both for the general weak input signals.



The new potential function of this nonlinear system is For this optimization problem, we will take parameters A
modified as and D as the optimal parameters, while parameter r-a and

U2 X4 Xb will be taken as the supporting parameters which are
U(x) = -[A- S(t)]-- + , (7) used to ensure the optimization problem (11) has solution,

where Xb is one of the two new system parameters. as shown later. In order to simplify the calculation, the direct
By introducing another new system parameter T-a, the optimal parameters of (11) are A and Q, which are in turn

nonlinear dynamic system is now described by the following the functions of A and D.
equation We now prove that (11) has one and only one global

maximizer. Here, we will first define the corresponding
-raXt(t) = [A - S(t) - (8) unconstrained optimization problem as

b

where the definitions of S(t) and 6(t) are same as (1). max(Ci). (12)

In this nonlinear system, the system parameters are Ta, Xb Proposition 1: The unconstrained optimization problem
and A. Parameter Ta will affect the system response time and (12) has one and only one pair of parameters (Q*, A*)
parameter Xb will affect the barrier height of the potential satisfying the first-order necessary condition for a local
function of this system. Parameter A is used to shift the input maximizer.
signal. All these three system parameters have direct physical Proof According to the first-order necessary condition
meaning and their influences on the the system performance of this optimization problem (12), we have
measure (C1) are easier to understand, compared with the
one used in [22]. a(C1) = 0 and -(C. ) = 0. (13)

From [5], we know the ensemble-averaged escape rate can MA 9Q
be expressed as follow, if the parameter Ta = 1

(R~t)~" U"(minIU"(m ,Iet ~~~Then, we can derive c•-aAQ = 1, and

--S4A3 + cTrýeKi (1 + 82A2 /2 - 3S4A4 /8) = 0. (14)

where U is the potential function, X2 min is one of the local
minimizers and Xmax is the local maximizer. Let

The new nonlinear system equation and the new potential
function will affect the (R(t)). The method to derive the Obviously, there is at least one solution (Q*, A*) satisfy-
approximation of (C1) is similar to the one to derive (6). ing this first-order necessary condition, because
Also, for the general weak input signal case, we can derive
the final approximation of normalized power norm (C 1), if f(0) = c7raeKi > 0 and f(+oo) = -Co. (16)
the condition A 2S(t)2 < 1 is met Let

As C)f(A) = - +
4

A
3

, (17)
(A

2
,

2 
+ A + ' ( 2 + ) CTQA)1/

2  
f 2 (A) craeKi(1 + s 2

A
2

/2 - 38
4

A 4
/8). (18)

where: Function fi(A) is a monotonically decreasing function.

Q= ra'° e - -X---_ = c-.,AQ, A 2D s = S(t 2 . Function f 2 (A) will first increase with A and then decreaseto -cc. From these facts, we can prove that the first-order
In order to investigate whether the stochastic resonance necessary condition can only have one positive solution.

effect of the above nonlinear system can be further enhanced
by tuning system parameters and noise intensity at the same
time, we need to check whether the following constrained Proposition 2: The system parameter Ta can continuously
optimization problem has global maximizer adjust (Q*, A*) satisfying the first-order necessary condi-

max(CI), (11) tion. ,
subject to: A > 0, ss 2< A 2, A2s2 << 1, Do :_ D < D1  Proof.- The system parameter T-a affects f 2 (A), but

2 not fi(A). From the special characteristics of these two
The constrain of S(t)2 < A2 comes from the requirement functions, we can find out that the increase of T-a will also

on weak input signal. Parameter A is positive and [A- S(t) ] increase the value of A* satisfying (14). If Ta is getting close
is also positive. In addition, A 2s 2 < 1 should be satisfied to zero, A* will also approach zero. From this, we complete
in order to make (10) valid. According to [5], the theoretic the proof of this proposition. U
expression (Ci) can still predict its real shape, even if the
noise intensity is beyond the range of its validity. Also, we Proposition 3: The unconstrained optimization problem
assume here that the noise cannot be removed. So, the only (12) has one and only one local maximizer when the input
requirements on the noise intensity are that it cannot be less is small and the system parameters -ra and Xb are chosen
than its initial value Do, and it can not be arbitrarily large. properly.



Proof: From Proposition 1, we know the first-order Proposition 4 reveals that the results of [22] can be

necessary condition only has one solution (Q*, A*). We now extended to the more general weak input signal case, when

prove this solution will also satisfy the second-order sufficient the nonlinear system model with more physical meaning

condition for a local maximizer, that is the Hessian matrix is is adopted. This system's maximal normalized power norm

negative definite at the point (Q*, A*). (Ci) can be further increased with this scheme, compared

According to Proposition 2, the system parameter ra can with that of either tuning system parameters or adjusting
be adjusted properly so that the requirement s2A*2 < 1 can noise intensity.
be satisfied. From this, we can get

-c-CreKiS 2
A*

2 + s
2
A*(--4 + 2S

2 A*
2

) IV. OPTIMIZATION ALGORITHM

-cmaeKls 2A* 2(2 - 3s 2A*2 /4) < 0, (19) In order to meet performance requirements for some tasks,

and such as high-speed target detection, it is important to develop

-s 4 A4/8 + (-1 + s2 A*2 /2) < 0. (20) a fast-converging optimization algorithm to search the opti-
mal system parameters and noise intensity.

From (14), (19), and (20), it follows that a 2 The optimal parameters (A*, D*) of the constrained op-and , at AI timization problem (11) can be derived from the values
aAaQ (Q*, A*) satisfying (14). We will use Newton's method for

The Hessian matrix is defined as nonlinear equations to solve (14), because vf(A*) is non-

(q o2 (C1 ) singular for the weak input signals. According to [23], this
A2• 8A8Q method will reach a local Q-quadratic convergence, if the

2 COA a82 initial value is selected properly.

Our algorithm provides a method to estimate the initial
To prove the Hessian m atrix is negative definite, we need value lfor ithe N won alg r thm to esur e the fas t io e

value for the Newton algorithm to ensure the fast conver-
to verify its determinant value is positive.

At A = A* and Q = Q*, the numerator of this Hessian gence.
matrix determinant value can be simplified as: In this algorithm, the optimal parameters are Q, A, Ta

and Xb. The optimal value (A*, D*) can be derived from
84A. 3 (2 _ 2s 2 A*2 ) + . 4.!14 -9s

2 A. 2

+ (e2-2s8 + 4 A -8 8 ) these values. Xb will only affect the optimal noise intensity
8 eand should be chosen to ensure (11) has solution. Here,

+(s 4A*3 + 8 2 we assume Ta is also adjustable. From (10), we notice that
15*7 e8 sA.8 the increase of T-a will decrease the value of (CI), if other

+ 2 + 64 (21) parameters are fixed. This means that there will be no local
2 64 ' maximizer for r'a, it can only take the extremum.

Its numerator will be positive, if s2 A *2 < 1. Also, its The main idea of this algorithm is that the tables describing

denominator is positive. From the standard test on negative- the relationship between A%, input signal, and Ta will be used
definiteness of a symmetric matrix, it follows the Hessian to estimate the initial values for the given input signal. These

matrix is negative definite. This completes the proof of tables are constructed off-line. The estimated initial values

Proposition 3. U are close enough to the optimal values to ensure the fast

convergence of this algorithm. The details of the algorithm
Proposition 4: The constrained optimization problem (11) can refer to [22]. The only changes are that the "too large"

with small input has one and only one global maximizer, if condition means D < D1 for the first case, and it means
the system parameters Ta and Xb are chosen properly. D < Do or the requirement s2 A. 2 < 1 is not met for the

Proof: According to Proposition 3, (12) has one and second case.
only one local maximizer (Q*, A*). Also, from Proposition
2, A* can be continuously adjusted by the system parameter
Ta such that s2A. 2 << 1. In this case, the requirement for V. ENHANCEMENT OF WEAK SIGNALS

s 2 < A" 2 will also be satisfied and system parameter A* The traditional method to restore the weak signal corrupted

will be positive, because of A* = 2/A*. by noise will try to remove noise from the signal. The

The constraints on the noise intensity can also be satisfied method based on stochastic resonance (SR), on the contrary,
by tuning system parameters Tra and Xb, because of D* = can improve the performance measure, such as signal-to-
TaX2/A*

2. So, the constrained optimization problem (11) noise ratio, with the addition of an extra amount of noise.

has one and only one local maximizer. A critical task in developing the SR-based signal processor
It is obvious that the only local maximizer is also the is how to realize stochastic resonance and how to enhance

global maximizer of (11). This completes the proof of this stochastic resonance effect. In this paper, the bistable double-
proposition. U well dynamic system acts as a nonlinear filter to restore the



input signal corrupted by noise. The normalized power norm
(Cl) is adopted as the performance measure. Obviously, a .
larger (C1 ) value means that the input signal and the output 0 ... -9 ..

signal are more similar. This, in turn, means that the corrupted 0.8. 0". . 0

input signal is better restored by this nonlinear system. In this 0 0 .0 o
case, the mechanism to further improve the maximal (CI) o.•0.7

with tuning system parameters and nose intensity will have 0. 0.6

practical usage. It can better restore the signal from noise x 0.5 o
than the traditional SR method, which only adjusts the noise 0.4 0

intensity. 0.3 0 • dj stdbo
0 djust D

This SR-based nonlinear filters with tuning system param- 0 adjustA

eters and noise intensity can find applications at least in two 0.2

situations. The first case is when the traditional denosing filter 0.:1 2 3 4 5 6 7 a .0 10

cannot completely remove the noise from the signal. In this Input signoal X10-

case, the SR-based nonlinear filter is a good candidate to
be used as a post-processor to further improve performance. Fig. 1. Comparison of Maximal (C1)
The second case is when this nonlinear SR dynamic system
is a part of the whole system under investigation. In this case,
tuning the system parameters and noise intensity to maximize
the enhancement of the weak input signal corrupted by noise
will benefit the rest of the system. For example, it will be +
easier to process an input with higher signal-to-noise ratio. +

In order to demonstrate this mechanism's better enhance- 0 nts/Random

ment of weak signal compared with the traditional stochas- Number

tic resonance method, simulations are performed. The first +
simulation is to directly compare the maximal (Cl) reached A

by three different methods: (1) adjusting system parameters Constant Subtract Gain

and noise at the same time; (2) only adjusting system
parameters; (3) only adjusting noise intensity. The simulation
result is shown in Fig. 1. From this figure, it is obvious 1- ,.
that the mechanism proposed in this papers gives the best Sine Wave 3--1
performance, especially for the weak input signal case. Math Gainl

Now, we will directly deal with the system output x(t) Constant1 Function

and compare their waveforms, in order to better demonstrate
the nonlinear enhancement of the weak input signal by this Fig. 2. Simulation Model

method. Fig. 2 is the simulation model. The original input
signal and its corrupted noisy signal are displayed in Fig. 3,
while Fig. 4 shows some of the system output x(t) simulation
results for the same input signal with different values of 0.2

system parameter A and noise intensity D. 0.1
From this simulation, it is easy to notice that the similarity 0 - . --......

between input and output, or the denoising effect, is greatly -0.1
,affected by the choices of the system parameter A and noise -0.2

intensity D. It will be maximized for the properly chosen A (a) Ip signal

and D. This can be even more obvious, if a similar signal
recovery method as in [20] is adopted to further recover input o.1
S(t) from x(t). 0

VI. CONCLUSION -20 20 40 60 80 100 120
(b) noisy signal

This paper first reveals that the results of [22] can be

extended to a modified bistable double-well nonlinear dy- Fig. 3. Original & Noisy Signals

namic system with more general weak input signals. In this
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Abstract--Stochastic resonance (SR) is a phenomenon that input signal, noise, and performance measure[8]. Many kinds
performance of the nonlinear system can be improved with of nonlinear systems have been shown to yield stochastic
the addition of optimal amount of noise. Stochastic resonance resonance phenomenon, such as the static systems[4] and
has been increasingly used for signal processing. The output of
the nonlinear bistable dynamic system can be used to restore dynamic systems[l]. The input signal can be periodic[l]
the weak input signal corrupted by white Gaussian noise, if or aperiodic[5]. The classical stochastic resonance requires
the similarity between the input signal and the output can be the input signal to be subthreshold signal[l]. Recently, it
maximized. This paper will first use the optimization theory was found that the input signals can be arbitrary and are
to show that the normalized power norm (Cl) describing the not limited to weak signals. This is characterized by the
similarity will reach a larger maximum when tuning both the
system parameters and noise intensity, compared with that of suprathreshold stochastic resonance[6]. Not only the white
only adjusting noise intensity (classical stochastic resonance) or Gaussian noise[l], but also the colored[9] and non-Gaussian
only adjusting system parameters (parameter-tuning stochastic noise[10], can generate a stochastic resonance effect. In
resonance). Then, a practical fast-converging optimization algo- order to describe the stochastic resonance more exactly,
rithm is mentioned to search the optimal system parameters and many quantifiers have been proposed as the performance

* noise intensity. Finally, computer simulations are performed to manuaes hav beena propose athe performance
verify this proposal and demonstrate its application in signal measures, such as signal-to-noise ratio[l], power norm[5],
processing. and mutual information[7]. Stochastic resonance has found

applications *in many different areas, such as noise en-
Index Terms- Optimization, Stochastic Resonance, Signal hanced tactile sensation[l I], the application of suprathreshold

Processing stochastic resonance to cochlear implant coding[ 12]. Another

I. INTRODUCTION important application is in signal processing. It has been
used for signal detection[13], signal transmission[15], sig-

Noise is usually thought to be annoying and should be nal estimation[17], and image processing[8]. The detector
removed from the system. In some nonlinear systems, how- based on stochastic resonance can improve the robustness
ever, the addition of some extra amount of noise has been of the detector and its performance can compare with the
shown to be helpful. This phenomenon is called Stochastic locally optimum detectors(LOD)[14]. When the information
resonance (SR)[1][2], and only exists in certain nonlinear is transmitted through a large parallel summing array, the
systems. For these systems, the synchronization between noise can enhance performance up to approximately half

* the input signal and the noise will happen when the noise the theoretical noiseless channel capacity[16]. The Bayesian
intensity is adjusted properly. In these cases, the system estimator using stochastic resonance technique will achieve
performance, such as the output signal-to-noise ratio and the minimum of the mean square estimation error when
mutual information, will benefit from the noise. The im- estimating the frequency of a periodic signal corrupted by
provement of the system performance can be maximized a phase noise[17]. In order to make the noise useful, the
if the noise intensity is adjusted to an optimal level. This stochastic resonance effect should be realized. For the tradi-
phenomenon was first revealed by Benzi in 1981 to explain tional stochastic resonance, the stochastic resonance is real-
the periodically recurrent ice ages [3]. Since then, stochastic ized by adjusting noise intensity[l]. Recently, the parameter-
resonance has been continuously attracting considerable at- tuning stochastic resonance shows that tuning system pa-
tention of researchers. Basically, the stochastic resonance in- rameters is a better method to realize stochastic resonance
volves four elements: nonlinear system, information-carrying in some situations, especially when the initial input noise

` This work has been partially supported by the Polytechnic CArT Center intensity is already beyond the resonance region[18] [19][20].
sponsored by New York State, NSF grants ECS-009317, OISE-0408925, and The chosen performance measure will reach a higher/lower
DMS-0504462, and an Air Force contract maximum/minimum, compared with that by adjusting noise
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